Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Urban Metric Maps for Small Unmanned Aircraft Systems Motion Planning (2102.07218v1)

Published 14 Feb 2021 in cs.RO

Abstract: Low-altitude urban flight planning for small Unmanned Aircraft Systems (UAS) requires accurate vehicle, environment maps, and risk models to assure flight plans consider the urban landscape as well as airspace constraints. This paper presents a suite of motion planning metrics designed for small UAS urban flight. We define map-based and path-based metrics to holistically characterize motion plan quality. Proposed metrics are examined in the context of representative geometric, graph-based, and sampling-based motion planners applied to a multicopter small UAS. A novel multi-objective heuristic is proposed and applied for graph-based and sampling motion planners at four urban UAS flight altitude layers. Monte Carlo case studies in a New York City urban environment illustrate metric map properties and planner performance. Motion plans are evaluated as a function of planning algorithm, location, range, and flight altitude.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.