Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Refined Belief-Propagation Decoding of Quantum Codes with Scalar Messages (2102.07122v1)

Published 14 Feb 2021 in quant-ph, cs.IT, and math.IT

Abstract: Codes based on sparse matrices have good performance and can be efficiently decoded by belief-propagation (BP). Decoding binary stabilizer codes needs a quaternary BP for (additive) codes over GF(4), which has a higher check-node complexity compared to a binary BP for codes over GF(2). Moreover, BP decoding of stabilizer codes suffers a performance loss from the short cycles in the underlying Tanner graph. In this paper, we propose a refined BP algorithm for decoding quantum codes by passing scalar messages. For a given error syndrome, this algorithm decodes to the same output as the conventional quaternary BP but with a check-node complexity the same as binary BP. As every message is a scalar, the message normalization can be naturally applied to improve the performance. Another observation is that the message-update schedule affects the BP decoding performance against short cycles. We show that running BP with message normalization according to a serial schedule (or other schedules) may significantly improve the decoding performance and error-floor in computer simulation.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.