Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sliced Multi-Marginal Optimal Transport (2102.07115v2)

Published 14 Feb 2021 in stat.ML and cs.LG

Abstract: Multi-marginal optimal transport enables one to compare multiple probability measures, which increasingly finds application in multi-task learning problems. One practical limitation of multi-marginal transport is computational scalability in the number of measures, samples and dimensionality. In this work, we propose a multi-marginal optimal transport paradigm based on random one-dimensional projections, whose (generalized) distance we term the sliced multi-marginal Wasserstein distance. To construct this distance, we introduce a characterization of the one-dimensional multi-marginal Kantorovich problem and use it to highlight a number of properties of the sliced multi-marginal Wasserstein distance. In particular, we show that (i) the sliced multi-marginal Wasserstein distance is a (generalized) metric that induces the same topology as the standard Wasserstein distance, (ii) it admits a dimension-free sample complexity, (iii) it is tightly connected with the problem of barycentric averaging under the sliced-Wasserstein metric. We conclude by illustrating the sliced multi-marginal Wasserstein on multi-task density estimation and multi-dynamics reinforcement learning problems.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.