Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Adversarial defense for automatic speaker verification by cascaded self-supervised learning models (2102.07047v1)

Published 14 Feb 2021 in eess.AS and cs.AI

Abstract: Automatic speaker verification (ASV) is one of the core technologies in biometric identification. With the ubiquitous usage of ASV systems in safety-critical applications, more and more malicious attackers attempt to launch adversarial attacks at ASV systems. In the midst of the arms race between attack and defense in ASV, how to effectively improve the robustness of ASV against adversarial attacks remains an open question. We note that the self-supervised learning models possess the ability to mitigate superficial perturbations in the input after pretraining. Hence, with the goal of effective defense in ASV against adversarial attacks, we propose a standard and attack-agnostic method based on cascaded self-supervised learning models to purify the adversarial perturbations. Experimental results demonstrate that the proposed method achieves effective defense performance and can successfully counter adversarial attacks in scenarios where attackers may either be aware or unaware of the self-supervised learning models.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.