Papers
Topics
Authors
Recent
2000 character limit reached

Beating Two-Thirds For Random-Order Streaming Matching (2102.07011v2)

Published 13 Feb 2021 in cs.DS

Abstract: We study the maximum matching problem in the random-order semi-streaming setting. In this problem, the edges of an arbitrary $n$-vertex graph $G=(V, E)$ arrive in a stream one by one and in a random order. The goal is to have a single pass over the stream, use $n \cdot poly(\log n)$ space, and output a large matching of $G$. We prove that for an absolute constant $\epsilon_0 > 0$, one can find a $(2/3 + \epsilon_0)$-approximate maximum matching of $G$ using $O(n \log n)$ space with high probability. This breaks the natural boundary of $2/3$ for this problem prevalent in the prior work and resolves an open problem of Bernstein [ICALP'20] on whether a $(2/3 + \Omega(1))$-approximation is achievable.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.