Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Beating Two-Thirds For Random-Order Streaming Matching (2102.07011v2)

Published 13 Feb 2021 in cs.DS

Abstract: We study the maximum matching problem in the random-order semi-streaming setting. In this problem, the edges of an arbitrary $n$-vertex graph $G=(V, E)$ arrive in a stream one by one and in a random order. The goal is to have a single pass over the stream, use $n \cdot poly(\log n)$ space, and output a large matching of $G$. We prove that for an absolute constant $\epsilon_0 > 0$, one can find a $(2/3 + \epsilon_0)$-approximate maximum matching of $G$ using $O(n \log n)$ space with high probability. This breaks the natural boundary of $2/3$ for this problem prevalent in the prior work and resolves an open problem of Bernstein [ICALP'20] on whether a $(2/3 + \Omega(1))$-approximation is achievable.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube