Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Revisiting Smoothed Online Learning (2102.06933v3)

Published 13 Feb 2021 in cs.LG, math.OC, and stat.ML

Abstract: In this paper, we revisit the problem of smoothed online learning, in which the online learner suffers both a hitting cost and a switching cost, and target two performance metrics: competitive ratio and dynamic regret with switching cost. To bound the competitive ratio, we assume the hitting cost is known to the learner in each round, and investigate the simple idea of balancing the two costs by an optimization problem. Surprisingly, we find that minimizing the hitting cost alone is $\max(1, \frac{2}{\alpha})$-competitive for $\alpha$-polyhedral functions and $1 + \frac{4}{\lambda}$-competitive for $\lambda$-quadratic growth functions, both of which improve state-of-the-art results significantly. Moreover, when the hitting cost is both convex and $\lambda$-quadratic growth, we reduce the competitive ratio to $1 + \frac{2}{\sqrt{\lambda}}$ by minimizing the weighted sum of the hitting cost and the switching cost. To bound the dynamic regret with switching cost, we follow the standard setting of online convex optimization, in which the hitting cost is convex but hidden from the learner before making predictions. We modify Ader, an existing algorithm designed for dynamic regret, slightly to take into account the switching cost when measuring the performance. The proposed algorithm, named as Smoothed Ader, attains an optimal $O(\sqrt{T(1+P_T)})$ bound for dynamic regret with switching cost, where $P_T$ is the path-length of the comparator sequence. Furthermore, if the hitting cost is accessible in the beginning of each round, we obtain a similar guarantee without the bounded gradient condition, and establish an $\Omega(\sqrt{T(1+P_T)})$ lower bound to confirm the optimality.

Citations (24)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.