Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Co-lexicographically Ordering Automata and Regular Languages -- Part II (2102.06798v3)

Published 12 Feb 2021 in cs.FL and cs.DS

Abstract: In the present work, we tackle the regular language indexing problem by first studying the hierarchy of $p$-sortable languages: regular languages accepted by automata of width $p$. We show that the hierarchy is strict and does not collapse, and provide (exponential in $p$) upper and lower bounds relating the minimum widths of equivalent NFAs and DFAs. Our bounds indicate the importance of being able to index NFAs, as they enable indexing regular languages with much faster and smaller indexes. Our second contribution solves precisely this problem, optimally: we devise a polynomial-time algorithm that indexes any NFA with the optimal value $p$ for its width, without explicitly computing $p$ (NP-hard to find). In particular, this implies that we can index in polynomial time the well-studied case $p=1$ (Wheeler NFAs). More in general, in polynomial time we can build an index breaking the worst-case conditional lower bound of $\Omega(|P| m)$, whenever the input NFA's width is $p \in o(\sqrt{m})$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.