Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Data-Driven Synthesis of Provably Sound Side Channel Analyses (2102.06753v1)

Published 12 Feb 2021 in cs.SE and cs.PL

Abstract: We propose a data-driven method for synthesizing a static analyzer to detect side-channel information leaks in cryptographic software. Compared to the conventional way of manually crafting such a static analyzer, which can be labor intensive, error prone and suboptimal, our learning-based technique is not only automated but also provably sound. Our analyzer consists of a set of type-inference rules learned from the training data, i.e., example code snippets annotated with ground truth. Internally, we use syntax-guided synthesis (SyGuS) to generate new features and decision tree learning (DTL) to generate type-inference rules based on these features. We guarantee soundness by formally proving each learned rule via a technique called Datalog query containment checking. We have implemented our technique in the LLVM compiler and used it to detect power side channels in C programs. Our results show that, in addition to being automated and provably sound during synthesis, the learned analyzer also has the same empirical accuracy as two state-of-the-art, manually crafted analyzers while being 300X and 900X faster, respectively.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube