Data-Driven Synthesis of Provably Sound Side Channel Analyses (2102.06753v1)
Abstract: We propose a data-driven method for synthesizing a static analyzer to detect side-channel information leaks in cryptographic software. Compared to the conventional way of manually crafting such a static analyzer, which can be labor intensive, error prone and suboptimal, our learning-based technique is not only automated but also provably sound. Our analyzer consists of a set of type-inference rules learned from the training data, i.e., example code snippets annotated with ground truth. Internally, we use syntax-guided synthesis (SyGuS) to generate new features and decision tree learning (DTL) to generate type-inference rules based on these features. We guarantee soundness by formally proving each learned rule via a technique called Datalog query containment checking. We have implemented our technique in the LLVM compiler and used it to detect power side channels in C programs. Our results show that, in addition to being automated and provably sound during synthesis, the learned analyzer also has the same empirical accuracy as two state-of-the-art, manually crafted analyzers while being 300X and 900X faster, respectively.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.