Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rethinking Eye-blink: Assessing Task Difficulty through Physiological Representation of Spontaneous Blinking (2102.06690v1)

Published 12 Feb 2021 in cs.HC, cs.AI, and cs.CV

Abstract: Continuous assessment of task difficulty and mental workload is essential in improving the usability and accessibility of interactive systems. Eye tracking data has often been investigated to achieve this ability, with reports on the limited role of standard blink metrics. Here, we propose a new approach to the analysis of eye-blink responses for automated estimation of task difficulty. The core module is a time-frequency representation of eye-blink, which aims to capture the richness of information reflected on blinking. In our first study, we show that this method significantly improves the sensitivity to task difficulty. We then demonstrate how to form a framework where the represented patterns are analyzed with multi-dimensional Long Short-Term Memory recurrent neural networks for their non-linear mapping onto difficulty-related parameters. This framework outperformed other methods that used hand-engineered features. This approach works with any built-in camera, without requiring specialized devices. We conclude by discussing how Rethinking Eye-blink can benefit real-world applications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Youngjun Cho (25 papers)
Citations (29)

Summary

We haven't generated a summary for this paper yet.