Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Optimizing Inference Performance of Transformers on CPUs (2102.06621v3)

Published 12 Feb 2021 in cs.CL, cs.AI, cs.DC, cs.LG, and cs.MS

Abstract: The Transformer architecture revolutionized the field of NLP. Transformers-based models (e.g., BERT) power many important Web services, such as search, translation, question-answering, etc. While enormous research attention is paid to the training of those models, relatively little efforts are made to improve their inference performance. This paper comes to address this gap by presenting an empirical analysis of scalability and performance of inferencing a Transformer-based model on CPUs. Focusing on the highly popular BERT model, we identify key components of the Transformer architecture where the bulk of the computation happens, and propose three optimizations to speed them up. The optimizations are evaluated using the inference benchmark from HuggingFace, and are shown to achieve the speedup of up to x2.37. The considered optimizations do not require any changes to the implementation of the models nor affect their accuracy.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.