Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Leveraging Reinforcement Learning for evaluating Robustness of KNN Search Algorithms (2102.06525v1)

Published 10 Feb 2021 in cs.LG and cs.AI

Abstract: The problem of finding K-nearest neighbors in the given dataset for a given query point has been worked upon since several years. In very high dimensional spaces the K-nearest neighbor search (KNNS) suffers in terms of complexity in computation of high dimensional distances. With the issue of curse of dimensionality, it gets quite tedious to reliably bank on the results of variety approximate nearest neighbor search approaches. In this paper, we survey some novel K-Nearest Neighbor Search approaches that tackles the problem of Search from the perspectives of computations, the accuracy of approximated results and leveraging parallelism to speed-up computations. We attempt to derive a relationship between the true positive and false points for a given KNNS approach. Finally, in order to evaluate the robustness of a KNNS approach against adversarial points, we propose a generic Reinforcement Learning based framework for the same.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.