Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On Agnostic PAC Learning using $\mathcal{L}_2$-polynomial Regression and Fourier-based Algorithms (2102.06277v1)

Published 11 Feb 2021 in cs.LG and cs.DS

Abstract: We develop a framework using Hilbert spaces as a proxy to analyze PAC learning problems with structural properties. We consider a joint Hilbert space incorporating the relation between the true label and the predictor under a joint distribution $D$. We demonstrate that agnostic PAC learning with 0-1 loss is equivalent to an optimization in the Hilbert space domain. With our model, we revisit the PAC learning problem using methods based on least-squares such as $\mathcal{L}_2$ polynomial regression and Linial's low-degree algorithm. We study learning with respect to several hypothesis classes such as half-spaces and polynomial-approximated classes (i.e., functions approximated by a fixed-degree polynomial). We prove that (under some distributional assumptions) such methods obtain generalization error up to $2opt$ with $opt$ being the optimal error of the class. Hence, we show the tightest bound on generalization error when $opt\leq 0.2$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.