Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Graph Matching Using Generalized Seed Side-Information (2102.06267v1)

Published 11 Feb 2021 in cs.IT, cs.SI, and math.IT

Abstract: In this paper, matching pairs of stocahstically generated graphs in the presence of generalized seed side-information is considered. The graph matching problem emerges naturally in various applications such as social network de-anonymization, image processing, DNA sequencing, and natural language processing. A pair of randomly generated labeled Erdos-Renyi graphs with pairwise correlated edges are considered. It is assumed that the matching strategy has access to the labeling of the vertices in the first graph, as well as a collection of shortlists -- called ambiguity sets -- of possible labels for the vertices of the second graph. The objective is to leverage the correlation among the edges of the graphs along with the side-information provided in the form of ambiguity sets to recover the labels of the vertices in the second graph. This scenario can be viewed as a generalization of the seeded graph matching problem, where the ambiguity sets take a specific form such that the exact labels for a subset of vertices in the second graph are known prior to matching. A matching strategy is proposed which operates by evaluating the joint typicality of the adjacency matrices of the graphs. Sufficient conditions on the edge statistics as well as ambiguity set statistics are derived under which the proposed matching strategy successfully recovers the labels of the vertices in the second graph. Additionally, Fano-type arguments are used to derive general necessary conditions for successful matching.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube