Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Graph Matching Using Generalized Seed Side-Information (2102.06267v1)

Published 11 Feb 2021 in cs.IT, cs.SI, and math.IT

Abstract: In this paper, matching pairs of stocahstically generated graphs in the presence of generalized seed side-information is considered. The graph matching problem emerges naturally in various applications such as social network de-anonymization, image processing, DNA sequencing, and natural language processing. A pair of randomly generated labeled Erdos-Renyi graphs with pairwise correlated edges are considered. It is assumed that the matching strategy has access to the labeling of the vertices in the first graph, as well as a collection of shortlists -- called ambiguity sets -- of possible labels for the vertices of the second graph. The objective is to leverage the correlation among the edges of the graphs along with the side-information provided in the form of ambiguity sets to recover the labels of the vertices in the second graph. This scenario can be viewed as a generalization of the seeded graph matching problem, where the ambiguity sets take a specific form such that the exact labels for a subset of vertices in the second graph are known prior to matching. A matching strategy is proposed which operates by evaluating the joint typicality of the adjacency matrices of the graphs. Sufficient conditions on the edge statistics as well as ambiguity set statistics are derived under which the proposed matching strategy successfully recovers the labels of the vertices in the second graph. Additionally, Fano-type arguments are used to derive general necessary conditions for successful matching.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mahshad Shariatnasab (5 papers)
  2. Farhad Shirani (45 papers)
  3. Siddharth Garg (100 papers)
  4. Elza Erkip (137 papers)

Summary

We haven't generated a summary for this paper yet.