Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep Iteration Assisted by Multi-level Obey-pixel Network Discriminator (DIAMOND) for Medical Image Recovery (2102.06102v1)

Published 8 Feb 2021 in eess.IV and cs.CV

Abstract: Image restoration is a typical ill-posed problem, and it contains various tasks. In the medical imaging field, an ill-posed image interrupts diagnosis and even following image processing. Both traditional iterative and up-to-date deep networks have attracted much attention and obtained a significant improvement in reconstructing satisfying images. This study combines their advantages into one unified mathematical model and proposes a general image restoration strategy to deal with such problems. This strategy consists of two modules. First, a novel generative adversarial net(GAN) with WGAN-GP training is built to recover image structures and subtle details. Then, a deep iteration module promotes image quality with a combination of pre-trained deep networks and compressed sensing algorithms by ADMM optimization. (D)eep (I)teration module suppresses image artifacts and further recovers subtle image details, (A)ssisted by (M)ulti-level (O)bey-pixel feature extraction networks (D)iscriminator to recover general structures. Therefore, the proposed strategy is named DIAMOND.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.