Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Approximation Algorithms for Generalized Multidimensional Knapsack (2102.05854v1)

Published 11 Feb 2021 in cs.DS and cs.CG

Abstract: We study a generalization of the knapsack problem with geometric and vector constraints. The input is a set of rectangular items, each with an associated profit and $d$ nonnegative weights ($d$-dimensional vector), and a square knapsack. The goal is to find a non-overlapping axis-parallel packing of a subset of items into the given knapsack such that the vector constraints are not violated, i.e., the sum of weights of all the packed items in any of the $d$ dimensions does not exceed one. We consider two variants of the problem: $(i)$ the items are not allowed to be rotated, $(ii)$ items can be rotated by 90 degrees. We give a $(2+\epsilon)$-approximation algorithm for this problem (both versions). In the process, we also study a variant of the maximum generalized assignment problem (Max-GAP), called Vector-Max-GAP, and design a PTAS for it.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.