Papers
Topics
Authors
Recent
2000 character limit reached

Reproducibility Report: La-MAML: Look-ahead Meta Learning for Continual Learning (2102.05824v2)

Published 11 Feb 2021 in cs.LG and cs.AI

Abstract: The Continual Learning (CL) problem involves performing well on a sequence of tasks under limited compute. Current algorithms in the domain are either slow, offline or sensitive to hyper-parameters. La-MAML, an optimization-based meta-learning algorithm claims to be better than other replay-based, prior-based and meta-learning based approaches. According to the MER paper [1], metrics to measure performance in the continual learning arena are Retained Accuracy (RA) and Backward Transfer-Interference (BTI). La-MAML claims to perform better in these values when compared to the SOTA in the domain. This is the main claim of the paper, which we shall be verifying in this report.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.