Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Reproducibility Report: La-MAML: Look-ahead Meta Learning for Continual Learning (2102.05824v2)

Published 11 Feb 2021 in cs.LG and cs.AI

Abstract: The Continual Learning (CL) problem involves performing well on a sequence of tasks under limited compute. Current algorithms in the domain are either slow, offline or sensitive to hyper-parameters. La-MAML, an optimization-based meta-learning algorithm claims to be better than other replay-based, prior-based and meta-learning based approaches. According to the MER paper [1], metrics to measure performance in the continual learning arena are Retained Accuracy (RA) and Backward Transfer-Interference (BTI). La-MAML claims to perform better in these values when compared to the SOTA in the domain. This is the main claim of the paper, which we shall be verifying in this report.

Citations (48)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)