Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A view of computational models for image segmentation (2102.05533v5)

Published 10 Feb 2021 in math.NA and cs.NA

Abstract: Image segmentation is a central topic in image processing and computer vision and a key issue in many applications, e.g., in medical imaging, microscopy, document analysis and remote sensing. According to the human perception, image segmentation is the process of dividing an image into non-overlapping regions. These regions, which may correspond, e.g., to different objects, are fundamental for the correct interpretation and classification of the scene represented by the image. The division into regions is not unique, but it depends on the application, i.e., it must be driven by the final goal of the segmentation and hence by the most significant features with respect to that goal. Thus, image segmentation can be regarded as a strongly ill-posed problem. A classical approach to deal with ill posedness consists in incorporating in the model a-priori information about the solution, e.g., in the form of penalty terms. In this work we provide a brief overview of basic computational models for image segmentation, focusing on edge-based and region-based variational models, as well as on statistical and machine-learning approaches. We also sketch numerical methods that are applied in computing solutions to these models. In our opinion, our view can help the readers identify suitable classes of methods for solving their specific problems.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.