Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Dynamic $β$-VAEs for quantifying biodiversity by clustering optically recorded insect signals (2102.05526v2)

Published 10 Feb 2021 in cs.LG

Abstract: While insects are the largest and most diverse group of terrestrial animals, constituting ca. 80% of all known species, they are difficult to study due to their small size and similarity between species. Conventional monitoring techniques depend on time consuming trapping methods and tedious microscope-based work by skilled experts in order to identify the caught insect specimen at species, or even family level. Researchers and policy makers are in urgent need of a scalable monitoring tool in order to conserve biodiversity and secure human food production due to the rapid decline in insect numbers. In order to improve upon existing insect clustering methods, we propose an adaptive variant of the variational autoencoder (VAE) which is capable of clustering data by phylogenetic groups. The proposed dynamic beta-VAE dynamically adapts the scaling of the reconstruction and regularization loss terms (beta value) yielding useful latent representations of the input data. We demonstrate the usefulness of the dynamic beta-VAE on optically recorded insect signals from regions of southern Scandinavia to cluster unlabelled targets into possible species. We also demonstrate improved clustering performance in a semi-supervised setting using a small subset of labelled data. These experimental results, in both unsupervised- and semi-supervised settings, with the dynamic beta-VAE are promising and, in the near future, can be deployed to monitor insects and conserve the rapidly declining insect biodiversity.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.