Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Efficient Pessimistic-Optimistic Algorithm for Stochastic Linear Bandits with General Constraints (2102.05295v3)

Published 10 Feb 2021 in cs.LG

Abstract: This paper considers stochastic linear bandits with general nonlinear constraints. The objective is to maximize the expected cumulative reward over horizon $T$ subject to a set of constraints in each round $\tau\leq T$. We propose a pessimistic-optimistic algorithm for this problem, which is efficient in two aspects. First, the algorithm yields $\tilde{\cal O}\left(\left(\frac{K{0.75}}{\delta}+d\right)\sqrt{\tau}\right)$ (pseudo) regret in round $\tau\leq T,$ where $K$ is the number of constraints, $d$ is the dimension of the reward feature space, and $\delta$ is a Slater's constant; and zero constraint violation in any round $\tau>\tau',$ where $\tau'$ is independent of horizon $T.$ Second, the algorithm is computationally efficient. Our algorithm is based on the primal-dual approach in optimization and includes two components. The primal component is similar to unconstrained stochastic linear bandits (our algorithm uses the linear upper confidence bound algorithm (LinUCB)). The computational complexity of the dual component depends on the number of constraints, but is independent of the sizes of the contextual space, the action space, and the feature space. Thus, the overall computational complexity of our algorithm is similar to that of the linear UCB for unconstrained stochastic linear bandits.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube