Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Solving time-fractional differential equation via rational approximation (2102.05139v2)

Published 9 Feb 2021 in math.NA and cs.NA

Abstract: Fractional differential equations (FDEs) describe subdiffusion behavior of dynamical systems. Its non-local structure requires taking into account the whole evolution history during the time integration, which then possibly causes additional memory use to store the history, growing in time. An alternative to a quadrature for the history integral is to approximate the fractional kernel with the sum of exponentials, which is equivalent to considering the FDE solution as a sum of solutions to a system of ODEs. One possibility to construct this system is to approximate the Laplace spectrum of the fractional kernel with a rational function. In this paper, we use the adaptive Antoulas--Anderson (AAA) algorithm for the rational approximation of the kernel spectrum which yields only a small number of real valued poles. We propose a numerical scheme based on this idea and study its stability and convergence properties. In addition, we apply the algorithm to a time-fractional Cahn-Hilliard problem.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube