Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

An application of a pseudo-parabolic modeling to texture image recognition (2102.05001v1)

Published 9 Feb 2021 in cs.CV

Abstract: In this work, we present a novel methodology for texture image recognition using a partial differential equation modeling. More specifically, we employ the pseudo-parabolic Buckley-Leverett equation to provide a dynamics to the digital image representation and collect local descriptors from those images evolving in time. For the local descriptors we employ the magnitude and signal binary patterns and a simple histogram of these features was capable of achieving promising results in a classification task. We compare the accuracy over well established benchmark texture databases and the results demonstrate competitiveness, even with the most modern deep learning approaches. The achieved results open space for future investigation on this type of modeling for image analysis, especially when there is no large amount of data for training deep learning models and therefore model-based approaches arise as suitable alternatives.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.