Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

PyART: Python API Recommendation in Real-Time (2102.04706v1)

Published 9 Feb 2021 in cs.SE

Abstract: API recommendation in real-time is challenging for dynamic languages like Python. Many existing API recommendation techniques are highly effective, but they mainly support static languages. A few Python IDEs provide API recommendation functionalities based on type inference and training on a large corpus of Python libraries and third-party libraries. As such, they may fail to recommend or make poor recommendations when type information is missing or target APIs are project-specific. In this paper, we propose a novel approach, PyART, to recommend APIs for Python programs in real-time. It features a light-weight analysis to derives so-called optimistic data-flow, which is neither sound nor complete, but simulates the local data-flow information humans can derive. It extracts three kinds of features: data-flow, token similarity, and token co-occurrence, in the context of the program point where a recommendation is solicited. A predictive model is trained on these features using the Random Forest algorithm. Evaluation on 8 popular Python projects demonstrates that PyART can provide effective API recommendations. When historic commits can be leveraged, which is the target scenario of a state-of-the-art tool ARIREC, our average top-1 accuracy is over 50% and average top-10 accuracy over 70%, outperforming APIREC and Intellicode (i.e., the recommendation component in Visual Studio) by 28.48%-39.05% for top-1 accuracy and 24.41%-30.49% for top-10 accuracy. In other applications such as when historic comments are not available and cross-project recommendation, PyART also shows better overall performance. The time to make a recommendation is less than a second on average, satisfying the real-time requirement.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.