Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Independent Vector Extraction for Fast Joint Blind Source Separation and Dereverberation (2102.04696v2)

Published 9 Feb 2021 in eess.AS, cs.SD, and eess.SP

Abstract: We address a blind source separation (BSS) problem in a noisy reverberant environment in which the number of microphones $M$ is greater than the number of sources of interest, and the other noise components can be approximated as stationary and Gaussian distributed. Conventional BSS algorithms for the optimization of a multi-input multi-output convolutional beamformer have suffered from a huge computational cost when $M$ is large. We here propose a computationally efficient method that integrates a weighted prediction error (WPE) dereverberation method and a fast BSS method called independent vector extraction (IVE), which has been developed for less reverberant environments. We show that, given the power spectrum for each source, the optimization problem of the new method can be reduced to that of IVE by exploiting the stationary condition, which makes the optimization easy to handle and computationally efficient. An experiment of speech signal separation shows that, compared to a conventional method that integrates WPE and independent vector analysis, our proposed method achieves much faster convergence while maintaining its separation performance.

Citations (8)

Summary

We haven't generated a summary for this paper yet.