Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Large Scale Long-tailed Product Recognition System at Alibaba (2102.04652v1)

Published 9 Feb 2021 in cs.CV

Abstract: A practical large scale product recognition system suffers from the phenomenon of long-tailed imbalanced training data under the E-commercial circumstance at Alibaba. Besides product images at Alibaba, plenty of image related side information (e.g. title, tags) reveal rich semantic information about images. Prior works mainly focus on addressing the long tail problem in visual perspective only, but lack of consideration of leveraging the side information. In this paper, we present a novel side information based large scale visual recognition co-training~(SICoT) system to deal with the long tail problem by leveraging the image related side information. In the proposed co-training system, we firstly introduce a bilinear word attention module aiming to construct a semantic embedding over the noisy side information. A visual feature and semantic embedding co-training scheme is then designed to transfer knowledge from classes with abundant training data (head classes) to classes with few training data (tail classes) in an end-to-end fashion. Extensive experiments on four challenging large scale datasets, whose numbers of classes range from one thousand to one million, demonstrate the scalable effectiveness of the proposed SICoT system in alleviating the long tail problem. In the visual search platform Pailitao\footnote{http://www.pailitao.com} at Alibaba, we settle a practical large scale product recognition application driven by the proposed SICoT system, and achieve a significant gain of unique visitor~(UV) conversion rate.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.