Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Operation is the hardest teacher: estimating DNN accuracy looking for mispredictions (2102.04287v1)

Published 8 Feb 2021 in cs.SE

Abstract: Deep Neural Networks (DNN) are typically tested for accuracy relying on a set of unlabelled real world data (operational dataset), from which a subset is selected, manually labelled and used as test suite. This subset is required to be small (due to manual labelling cost) yet to faithfully represent the operational context, with the resulting test suite containing roughly the same proportion of examples causing misprediction (i.e., failing test cases) as the operational dataset. However, while testing to estimate accuracy, it is desirable to also learn as much as possible from the failing tests in the operational dataset, since they inform about possible bugs of the DNN. A smart sampling strategy may allow to intentionally include in the test suite many examples causing misprediction, thus providing this way more valuable inputs for DNN improvement while preserving the ability to get trustworthy unbiased estimates. This paper presents a test selection technique (DeepEST) that actively looks for failing test cases in the operational dataset of a DNN, with the goal of assessing the DNN expected accuracy by a small and ''informative'' test suite (namely with a high number of mispredictions) for subsequent DNN improvement. Experiments with five subjects, combining four DNN models and three datasets, are described. The results show that DeepEST provides DNN accuracy estimates with precision close to (and often better than) those of existing sampling-based DNN testing techniques, while detecting from 5 to 30 times more mispredictions, with the same test suite size.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.