MetaTune: Meta-Learning Based Cost Model for Fast and Efficient Auto-tuning Frameworks (2102.04199v2)
Abstract: Deep learning compiler frameworks are gaining ground as a more portable back-end for deep learning applications on increasingly diverse hardware. However, they face the daunting challenge of matching performance offered by hand-tuned target-specific libraries. While auto-tuning frameworks with statistical cost models can provide dynamic and efficient code optimization, they suffer from large space exploration and cost model training overheads. This paper proposes MetaTune, a meta-learning based cost model that more quickly and accurately predicts the performance of optimized codes with pre-trained model parameters. MetaTune encodes convolution kernel codes as structurally similar graphs to facilitate meta-learning, meta-trains a GNN model with a very small input data set, and then predicts optimization parameters for unseen convolution operations with varying sizes and structures during compilation. The resulting framework with MetaTune provides 8 to 13% better inference time on average for four CNN models with comparable or lower optimization time while outperforming transfer learning by 10% in cross-platform cases.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.