Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

User Engagement Prediction for Clarification in Search (2102.04163v1)

Published 8 Feb 2021 in cs.IR and cs.HC

Abstract: Clarification is increasingly becoming a vital factor in various topics of information retrieval, such as conversational search and modern Web search engines. Prompting the user for clarification in a search session can be very beneficial to the system as the user's explicit feedback helps the system improve retrieval massively. However, it comes with a very high risk of frustrating the user in case the system fails in asking decent clarifying questions. Therefore, it is of great importance to determine when and how to ask for clarification. To this aim, in this work, we model search clarification prediction as user engagement problem. We assume that the better a clarification is, the higher user engagement with it would be. We propose a Transformer-based model to tackle the task. The comparison with competitive baselines on large-scale real-life clarification engagement data proves the effectiveness of our model. Also, we analyse the effect of all result page elements on the performance and find that, among others, the ranked list of the search engine leads to considerable improvements. Our extensive analysis of task-specific features guides future research.

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.