Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Generate and Revise: Reinforcement Learning in Neural Poetry (2102.04114v1)

Published 8 Feb 2021 in cs.CL, cs.AI, and cs.LG

Abstract: Writers, poets, singers usually do not create their compositions in just one breath. Text is revisited, adjusted, modified, rephrased, even multiple times, in order to better convey meanings, emotions and feelings that the author wants to express. Amongst the noble written arts, Poetry is probably the one that needs to be elaborated the most, since the composition has to formally respect predefined meter and rhyming schemes. In this paper, we propose a framework to generate poems that are repeatedly revisited and corrected, as humans do, in order to improve their overall quality. We frame the problem of revising poems in the context of Reinforcement Learning and, in particular, using Proximal Policy Optimization. Our model generates poems from scratch and it learns to progressively adjust the generated text in order to match a target criterion. We evaluate this approach in the case of matching a rhyming scheme, without having any information on which words are responsible of creating rhymes and on how to coherently alter the poem words. The proposed framework is general and, with an appropriate reward shaping, it can be applied to other text generation problems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.