Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Additive Feature Hashing (2102.03943v1)

Published 7 Feb 2021 in cs.LG

Abstract: The hashing trick is a machine learning technique used to encode categorical features into a numerical vector representation of pre-defined fixed length. It works by using the categorical hash values as vector indices, and updating the vector values at those indices. Here we discuss a different approach based on additive-hashing and the "almost orthogonal" property of high-dimensional random vectors. That is, we show that additive feature hashing can be performed directly by adding the hash values and converting them into high-dimensional numerical vectors. We show that the performance of additive feature hashing is similar to the hashing trick, and we illustrate the results numerically using synthetic, language recognition, and SMS spam detection data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.