Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Model-Augmented Q-learning (2102.03866v1)

Published 7 Feb 2021 in cs.LG

Abstract: In recent years, $Q$-learning has become indispensable for model-free reinforcement learning (MFRL). However, it suffers from well-known problems such as under- and overestimation bias of the value, which may adversely affect the policy learning. To resolve this issue, we propose a MFRL framework that is augmented with the components of model-based RL. Specifically, we propose to estimate not only the $Q$-values but also both the transition and the reward with a shared network. We further utilize the estimated reward from the model estimators for $Q$-learning, which promotes interaction between the estimators. We show that the proposed scheme, called Model-augmented $Q$-learning (MQL), obtains a policy-invariant solution which is identical to the solution obtained by learning with true reward. Finally, we also provide a trick to prioritize past experiences in the replay buffer by utilizing model-estimation errors. We experimentally validate MQL built upon state-of-the-art off-policy MFRL methods, and show that MQL largely improves their performance and convergence. The proposed scheme is simple to implement and does not require additional training cost.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.