Papers
Topics
Authors
Recent
2000 character limit reached

Neural Termination Analysis (2102.03824v4)

Published 7 Feb 2021 in cs.LG, cs.LO, and cs.PL

Abstract: We introduce a novel approach to the automated termination analysis of computer programs: we use neural networks to represent ranking functions. Ranking functions map program states to values that are bounded from below and decrease as a program runs; the existence of a ranking function proves that the program terminates. We train a neural network from sampled execution traces of a program so that the network's output decreases along the traces; then, we use symbolic reasoning to formally verify that it generalises to all possible executions. Upon the affirmative answer we obtain a formal certificate of termination for the program, which we call a neural ranking function. We demonstrate that thanks to the ability of neural networks to represent nonlinear functions our method succeeds over programs that are beyond the reach of state-of-the-art tools. This includes programs that use disjunctions in their loop conditions and programs that include nonlinear expressions.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.