Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Neural Termination Analysis (2102.03824v4)

Published 7 Feb 2021 in cs.LG, cs.LO, and cs.PL

Abstract: We introduce a novel approach to the automated termination analysis of computer programs: we use neural networks to represent ranking functions. Ranking functions map program states to values that are bounded from below and decrease as a program runs; the existence of a ranking function proves that the program terminates. We train a neural network from sampled execution traces of a program so that the network's output decreases along the traces; then, we use symbolic reasoning to formally verify that it generalises to all possible executions. Upon the affirmative answer we obtain a formal certificate of termination for the program, which we call a neural ranking function. We demonstrate that thanks to the ability of neural networks to represent nonlinear functions our method succeeds over programs that are beyond the reach of state-of-the-art tools. This includes programs that use disjunctions in their loop conditions and programs that include nonlinear expressions.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.