Papers
Topics
Authors
Recent
2000 character limit reached

Lazy OCO: Online Convex Optimization on a Switching Budget (2102.03803v7)

Published 7 Feb 2021 in cs.LG, math.OC, and stat.ML

Abstract: We study a variant of online convex optimization where the player is permitted to switch decisions at most $S$ times in expectation throughout $T$ rounds. Similar problems have been addressed in prior work for the discrete decision set setting, and more recently in the continuous setting but only with an adaptive adversary. In this work, we aim to fill the gap and present computationally efficient algorithms in the more prevalent oblivious setting, establishing a regret bound of $O(T/S)$ for general convex losses and $\widetilde O(T/S2)$ for strongly convex losses. In addition, for stochastic i.i.d.~losses, we present a simple algorithm that performs $\log T$ switches with only a multiplicative $\log T$ factor overhead in its regret in both the general and strongly convex settings. Finally, we complement our algorithms with lower bounds that match our upper bounds in some of the cases we consider.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.