Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Intensity-SLAM: Intensity Assisted Localization and Mapping for Large Scale Environment (2102.03798v2)

Published 7 Feb 2021 in cs.RO

Abstract: Simultaneous Localization And Mapping (SLAM) is a task to estimate the robot location and to reconstruct the environment based on observation from sensors such as LIght Detection And Ranging (LiDAR) and camera. It is widely used in robotic applications such as autonomous driving and drone delivery. Traditional LiDAR-based SLAM algorithms mainly leverage the geometric features from the scene context, while the intensity information from LiDAR is ignored. Some recent deep-learning-based SLAM algorithms consider intensity features and train the pose estimation network in an end-to-end manner. However, they require significant data collection effort and their generalizability to environments other than the trained one remains unclear. In this paper we introduce intensity features to a SLAM system. And we propose a novel full SLAM framework that leverages both geometry and intensity features. The proposed SLAM involves both intensity-based front-end odometry estimation and intensity-based back-end optimization. Thorough experiments are performed including both outdoor autonomous driving and indoor warehouse robot manipulation. The results show that the proposed method outperforms existing geometric-only LiDAR SLAM methods.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.