Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Mesh-robustness of an energy stable BDF2 scheme with variable steps for the Cahn-Hilliard model (2102.03731v2)

Published 7 Feb 2021 in math.NA and cs.NA

Abstract: The two-step backward differential formula (BDF2) with unequal time-steps is applied to construct an energy stable convex-splitting scheme for the Cahn-Hilliard model. We focus on the numerical influences of time-step variations by using the recent theoretical framework with the discrete orthogonal convolution kernels. Some novel discrete convolution embedding inequalities with respect to the orthogonal convolution kernels are developed such that a concise $L2$ norm error estimate is established at the first time under an updated step-ratio restriction $0 <r_k:=\tau_k/\tau_{k-1}\leq r_{\mathrm{user}}$, where $r_{\mathrm{user}}$ can be chosen by the user such that $r_{\mathrm{user}}<4.864$. The stabilized convex-splitting BDF2 scheme is shown to be mesh-robustly convergent in the sense that the convergence constant (prefactor) in the error estimate is independent of the adjoint time-step ratios. The suggested method is proved to preserve a modified energy dissipation law at the discrete levels if $0<r_k\le r_{\mathrm{user}}$, such that it is mesh-robustly stable in an energy norm. On the basis of ample tests on random time meshes, a useful adaptive time-stepping strategy is applied to efficiently capture the multi-scale behaviors and to accelerate the long-time simulation approaching the steady state.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.