Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Decentralized Ability-Aware Adaptive Control for Multi-robot Collaborative Manipulation (2102.03689v1)

Published 7 Feb 2021 in cs.RO and cs.MA

Abstract: Multi-robot teams can achieve more dexterous, complex and heavier payload tasks than a single robot, yet effective collaboration is required. Multi-robot collaboration is extremely challenging due to the different kinematic and dynamics capabilities of the robots, the limited communication between them, and the uncertainty of the system parameters. In this paper, a Decentralized Ability-Aware Adaptive Control is proposed to address these challenges based on two key features. Firstly, the common manipulation task is represented by the proposed nominal task ellipsoid, which is used to maximize each robot force capability online via optimizing its configuration. Secondly, a decentralized adaptive controller is designed to be Lyapunov stable in spite of heterogeneous actuation constraints of the robots and uncertain physical parameters of the object and environment. In the proposed framework, decentralized coordination and load distribution between the robots is achieved without communication, while only the control deficiency is broadcast if any of the robots reaches its force limits. In this case, the object reference trajectory is modified in a decentralized manner to guarantee stable interaction. Finally, we perform several numerical and physical simulations to analyse and verify the proposed method with heterogeneous multi-robot teams in collaborative manipulation tasks.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.