Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Decentralized Ability-Aware Adaptive Control for Multi-robot Collaborative Manipulation (2102.03689v1)

Published 7 Feb 2021 in cs.RO and cs.MA

Abstract: Multi-robot teams can achieve more dexterous, complex and heavier payload tasks than a single robot, yet effective collaboration is required. Multi-robot collaboration is extremely challenging due to the different kinematic and dynamics capabilities of the robots, the limited communication between them, and the uncertainty of the system parameters. In this paper, a Decentralized Ability-Aware Adaptive Control is proposed to address these challenges based on two key features. Firstly, the common manipulation task is represented by the proposed nominal task ellipsoid, which is used to maximize each robot force capability online via optimizing its configuration. Secondly, a decentralized adaptive controller is designed to be Lyapunov stable in spite of heterogeneous actuation constraints of the robots and uncertain physical parameters of the object and environment. In the proposed framework, decentralized coordination and load distribution between the robots is achieved without communication, while only the control deficiency is broadcast if any of the robots reaches its force limits. In this case, the object reference trajectory is modified in a decentralized manner to guarantee stable interaction. Finally, we perform several numerical and physical simulations to analyse and verify the proposed method with heterogeneous multi-robot teams in collaborative manipulation tasks.

Citations (31)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.