Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Exploring the Subgraph Density-Size Trade-off via the Lovász Extension (2102.03434v1)

Published 5 Feb 2021 in cs.SI, cs.DM, and cs.DS

Abstract: Given an undirected graph, the Densest-k-Subgraph problem (DkS) seeks to find a subset of k vertices such that the sum of the edge weights in the corresponding subgraph is maximized. The problem is known to be NP-hard, and is also very difficult to approximate, in the worst-case. In this paper, we present a new convex relaxation for the problem. Our key idea is to reformulate DkS as minimizing a submodular function subject to a cardinality constraint. Exploiting the fact that submodular functions possess a convex, continuous extension (known as the Lov\'asz extension), we propose to minimize the Lov\'asz extension over the convex hull of the cardinality constraints. Although the Lov\'asz extension of a submodular function does not admit an analytical form in general, for DkS we show that it does. We leverage this result to develop a highly scalable algorithm based on the Alternating Direction Method of Multipliers (ADMM) for solving the relaxed problem. Coupled with a pair of fortuitously simple rounding schemes, we demonstrate that our approach outperforms existing baselines on real-world graphs and can yield high quality sub-optimal solutions which typically are a posteriori no worse than 65-80\% of the optimal density.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.