Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

SkillBot: Identifying Risky Content for Children in Alexa Skills (2102.03382v2)

Published 5 Feb 2021 in cs.MA, cs.CL, cs.CR, and cs.HC

Abstract: Many households include children who use voice personal assistants (VPA) such as Amazon Alexa. Children benefit from the rich functionalities of VPAs and third-party apps but are also exposed to new risks in the VPA ecosystem. In this paper, we first investigate "risky" child-directed voice apps that contain inappropriate content or ask for personal information through voice interactions. We build SkillBot - a NLP-based system to automatically interact with VPA apps and analyze the resulting conversations. We find 28 risky child-directed apps and maintain a growing dataset of 31,966 non-overlapping app behaviors collected from 3,434 Alexa apps. Our findings suggest that although child-directed VPA apps are subject to stricter policy requirements and more intensive vetting, children remain vulnerable to inappropriate content and privacy violations. We then conduct a user study showing that parents are concerned about the identified risky apps. Many parents do not believe that these apps are available and designed for families/kids, although these apps are actually published in Amazon's "Kids" product category. We also find that parents often neglect basic precautions such as enabling parental controls on Alexa devices. Finally, we identify a novel risk in the VPA ecosystem: confounding utterances, or voice commands shared by multiple apps that may cause a user to interact with a different app than intended. We identify 4,487 confounding utterances, including 581 shared by child-directed and non-child-directed apps. We find that 27% of these confounding utterances prioritize invoking a non-child-directed app over a child-directed app. This indicates that children are at real risk of accidentally invoking non-child-directed apps due to confounding utterances.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube