Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Rethinking Neural Networks With Benford's Law (2102.03313v4)

Published 5 Feb 2021 in cs.LG

Abstract: Benford's Law (BL) or the Significant Digit Law defines the probability distribution of the first digit of numerical values in a data sample. This Law is observed in many naturally occurring datasets. It can be seen as a measure of naturalness of a given distribution and finds its application in areas like anomaly and fraud detection. In this work, we address the following question: Is the distribution of the Neural Network parameters related to the network's generalization capability? To that end, we first define a metric, MLH (Model Enthalpy), that measures the closeness of a set of numbers to Benford's Law and we show empirically that it is a strong predictor of Validation Accuracy. Second, we use MLH as an alternative to Validation Accuracy for Early Stopping, removing the need for a Validation set. We provide experimental evidence that even if the optimal size of the validation set is known before-hand, the peak test accuracy attained is lower than not using a validation set at all. Finally, we investigate the connection of BL to Free Energy Principle and First Law of Thermodynamics, showing that MLH is a component of the internal energy of the learning system and optimization as an analogy to minimizing the total energy to attain equilibrium.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.