Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Estimating 2-Sinkhorn Divergence between Gaussian Processes from Finite-Dimensional Marginals (2102.03267v1)

Published 5 Feb 2021 in cs.LG

Abstract: \emph{Optimal Transport} (OT) has emerged as an important computational tool in machine learning and computer vision, providing a geometrical framework for studying probability measures. OT unfortunately suffers from the curse of dimensionality and requires regularization for practical computations, of which the \emph{entropic regularization} is a popular choice, which can be 'unbiased', resulting in a \emph{Sinkhorn divergence}. In this work, we study the convergence of estimating the 2-Sinkhorn divergence between \emph{Gaussian processes} (GPs) using their finite-dimensional marginal distributions. We show almost sure convergence of the divergence when the marginals are sampled according to some base measure. Furthermore, we show that using $n$ marginals the estimation error of the divergence scales in a dimension-free way as $\mathcal{O}\left(\epsilon^ {-1}n{-\frac{1}{2}}\right)$, where $\epsilon$ is the magnitude of entropic regularization.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.