Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Diversification in Session-based News Recommender Systems (2102.03265v2)

Published 5 Feb 2021 in cs.IR

Abstract: Recommender systems are widely applied in digital platforms such as news websites to personalize services based on user preferences. In news websites most of users are anonymous and the only available data is sequences of items in anonymous sessions. Due to this, typical collaborative filtering methods, which are highly applied in many applications, are not effective in news recommendations. In this context, session-based recommenders are able to recommend next items given the sequence of previous items in the active session. Neighborhood-based session-based recommenders has been shown to be highly effective compared to more sophisticated approaches. In this study we propose scenarios to make these session-based recommender systems diversity-aware and to address the filter bubble phenomenon. The filter bubble phenomenon is a common concern in news recommendation systems and it occurs when the system narrows the information and deprives users of diverse information. The results of applying the proposed scenarios show that these diversification scenarios improve the diversity measures in these session-based recommender systems based on four news datasets.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.