Emergent Mind

ChainCQG: Flow-Aware Conversational Question Generation

(2102.02864)
Published Feb 4, 2021 in cs.AI

Abstract

Conversational systems enable numerous valuable applications, and question-answering is an important component underlying many of these. However, conversational question-answering remains challenging due to the lack of realistic, domain-specific training data. Inspired by this bottleneck, we focus on conversational question generation as a means to generate synthetic conversations for training and evaluation purposes. We present a number of novel strategies to improve conversational flow and accommodate varying question types and overall fluidity. Specifically, we design ChainCQG as a two-stage architecture that learns question-answer representations across multiple dialogue turns using a flow propagation training strategy.ChainCQG significantly outperforms both answer-aware and answer-unaware SOTA baselines (e.g., up to 48% BLEU-1 improvement). Additionally, our model is able to generate different types of questions, with improved fluidity and coreference alignment.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.