Papers
Topics
Authors
Recent
2000 character limit reached

Hierarchical Multi-head Attentive Network for Evidence-aware Fake News Detection (2102.02680v1)

Published 4 Feb 2021 in cs.AI and cs.IR

Abstract: The widespread of fake news and misinformation in various domains ranging from politics, economics to public health has posed an urgent need to automatically fact-check information. A recent trend in fake news detection is to utilize evidence from external sources. However, existing evidence-aware fake news detection methods focused on either only word-level attention or evidence-level attention, which may result in suboptimal performance. In this paper, we propose a Hierarchical Multi-head Attentive Network to fact-check textual claims. Our model jointly combines multi-head word-level attention and multi-head document-level attention, which aid explanation in both word-level and evidence-level. Experiments on two real-word datasets show that our model outperforms seven state-of-the-art baselines. Improvements over baselines are from 6\% to 18\%. Our source code and datasets are released at \texttt{\url{https://github.com/nguyenvo09/EACL2021}}.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.