Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A review of motion planning algorithms for intelligent robotics (2102.02376v2)

Published 4 Feb 2021 in cs.RO and cs.AI

Abstract: We investigate and analyze principles of typical motion planning algorithms. These include traditional planning algorithms, supervised learning, optimal value reinforcement learning, policy gradient reinforcement learning. Traditional planning algorithms we investigated include graph search algorithms, sampling-based algorithms, and interpolating curve algorithms. Supervised learning algorithms include MSVM, LSTM, MCTS and CNN. Optimal value reinforcement learning algorithms include Q learning, DQN, double DQN, dueling DQN. Policy gradient algorithms include policy gradient method, actor-critic algorithm, A3C, A2C, DPG, DDPG, TRPO and PPO. New general criteria are also introduced to evaluate performance and application of motion planning algorithms by analytical comparisons. Convergence speed and stability of optimal value and policy gradient algorithms are specially analyzed. Future directions are presented analytically according to principles and analytical comparisons of motion planning algorithms. This paper provides researchers with a clear and comprehensive understanding about advantages, disadvantages, relationships, and future of motion planning algorithms in robotics, and paves ways for better motion planning algorithms.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.