Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

AHAR: Adaptive CNN for Energy-efficient Human Activity Recognition in Low-power Edge Devices (2102.01875v3)

Published 3 Feb 2021 in cs.LG and eess.SP

Abstract: Human Activity Recognition (HAR) is one of the key applications of health monitoring that requires continuous use of wearable devices to track daily activities. This paper proposes an Adaptive CNN for energy-efficient HAR (AHAR) suitable for low-power edge devices. Unlike traditional early exit architecture that makes the exit decision based on classification confidence, AHAR proposes a novel adaptive architecture that uses an output block predictor to select a portion of the baseline architecture to use during the inference phase. Experimental results show that traditional early exit architectures suffer from performance loss whereas our adaptive architecture provides similar or better performance as the baseline one while being energy-efficient. We validate our methodology in classifying locomotion activities from two datasets- Opportunity and w-HAR. Compared to the fog/cloud computing approaches for the Opportunity dataset, our baseline and adaptive architecture shows a comparable weighted F1 score of 91.79%, and 91.57%, respectively. For the w-HAR dataset, our baseline and adaptive architecture outperforms the state-of-the-art works with a weighted F1 score of 97.55%, and 97.64%, respectively. Evaluation on real hardware shows that our baseline architecture is significantly energy-efficient (422.38x less) and memory-efficient (14.29x less) compared to the works on the Opportunity dataset. For the w-HAR dataset, our baseline architecture requires 2.04x less energy and 2.18x less memory compared to the state-of-the-art work. Moreover, experimental results show that our adaptive architecture is 12.32% (Opportunity) and 11.14% (w-HAR) energy-efficient than our baseline while providing similar (Opportunity) or better (w-HAR) performance with no significant memory overhead.

Citations (67)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.