Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A metaheuristic for crew scheduling in a pickup-and-delivery problem with time windows (2102.01780v1)

Published 2 Feb 2021 in cs.AI and cs.DM

Abstract: A vehicle routing and crew scheduling problem (VRCSP) consists of simultaneously planning the routes of a fleet of vehicles and scheduling the crews, where the vehicle-crew correspondence is not fixed through time. This allows a greater planning flexibility and a more efficient use of the fleet, but in counterpart, a high synchronisation is demanded. In this work, we present a VRCSP where pickup-and-delivery requests with time windows have to be fulfilled over a given planning horizon by using trucks and drivers. Crews can be composed of 1 or 2 drivers and any of them can be relieved in a given set of locations. Moreover, they are allowed to travel among locations with non-company shuttles, at an additional cost that is minimised. As our problem considers distinct routes for trucks and drivers, we have an additional flexibility not contemplated in other previous VRCSP given in the literature where a crew is handled as an indivisible unit. We tackle this problem with a two-stage sequential approach: a set of truck routes is computed in the first stage and a set of driver routes consistent with the truck routes is obtained in the second one. We design and evaluate the performance of a metaheuristic based algorithm for the latter stage. Our algorithm is mainly a GRASP with a perturbation procedure that allows reusing solutions already found in case the search for new solutions becomes difficult. This procedure together with other to repair infeasible solutions allow us to find high-quality solutions on instances of 100 requests spread across 15 cities with a fleet of 12-32 trucks (depending on the planning horizon) in less than an hour. We also conclude that the possibility of carrying an additional driver leads to a decrease of the cost of external shuttles by about 60% on average with respect to individual crews and, in some cases, to remove this cost completely.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.