Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Manifold Repairing, Reconstruction and Denoising from Scattered Data in High-Dimension (2102.01750v1)

Published 2 Feb 2021 in math.NA and cs.NA

Abstract: We consider a problem of great practical interest: the repairing and recovery of a low-dimensional manifold embedded in high-dimensional space from noisy scattered data. Suppose that we observe a point cloud sampled from the low-dimensional manifold, with noise, and let us assume that there are holes in the data. Can we recover missing information inside the holes? While in low-dimension the problem was extensively studied, manifold repairing in high dimension is still an open problem. We introduce a new approach, called Repairing Manifold Locally Optimal Projection (R-MLOP), that expands the MLOP method introduced by Faigenbaum-Golovin et al. in 2020, to cope with manifold repairing in low and high-dimensional cases. The proposed method can deal with multiple holes in a manifold. We prove the validity of the proposed method, and demonstrate the effectiveness of our approach by considering different manifold topologies, for single and multiple holes repairing, in low and high dimensions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.