Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Vehicle trajectory prediction in top-view image sequences based on deep learning method (2102.01749v3)

Published 2 Feb 2021 in cs.CV and cs.LG

Abstract: Annually, a large number of injuries and deaths around the world are related to motor vehicle accidents. This value has recently been reduced to some extent, via the use of driver-assistance systems. Developing driver-assistance systems (i.e., automated driving systems) can play a crucial role in reducing this number. Estimating and predicting surrounding vehicles' movement is essential for an automated vehicle and advanced safety systems. Moreover, predicting the trajectory is influenced by numerous factors, such as drivers' behavior during accidents, history of the vehicle's movement and the surrounding vehicles, and their position on the traffic scene. The vehicle must move over a safe path in traffic and react to other drivers' unpredictable behaviors in the shortest time. Herein, to predict automated vehicles' path, a model with low computational complexity is proposed, which is trained by images taken from the road's aerial image. Our method is based on an encoder-decoder model that utilizes a social tensor to model the effect of the surrounding vehicles' movement on the target vehicle. The proposed model can predict the vehicle's future path in any freeway only by viewing the images related to the history of the target vehicle's movement and its neighbors. Deep learning was used as a tool for extracting the features of these images. Using the HighD database, an image dataset of the road's aerial image was created, and the model's performance was evaluated on this new database. We achieved the RMSE of 1.91 for the next 5 seconds and found that the proposed method had less error than the best path-prediction methods in previous studies.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.