Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Enabling Lower-Power Charge-Domain Nonvolatile In-Memory Computing with Ferroelectric FETs (2102.01442v1)

Published 2 Feb 2021 in cs.ET

Abstract: Compute-in-memory (CiM) is a promising approach to alleviating the memory wall problem for domain-specific applications. Compared to current-domain CiM solutions, charge-domain CiM shows the opportunity for higher energy efficiency and resistance to device variations. However, the area occupation and standby leakage power of existing SRAMbased charge-domain CiM (CD-CiM) are high. This paper proposes the first concept and analysis of CD-CiM using nonvolatile memory (NVM) devices. The design implementation and performance evaluation are based on a proposed 2-transistor-1-capacitor (2T1C) CiM macro using ferroelectric field-effect-transistors (FeFETs), which is free from leakage power and much denser than the SRAM solution. With the supply voltage between 0.45V and 0.90V, operating frequency between 100MHz to 1.0GHz, binary neural network application simulations show over 47%, 60%, and 64% energy consumption reduction from existing SRAM-based CD-CiM, SRAM-based current-domain CiM, and RRAM-based current-domain CiM, respectively. For classifications in MNIST and CIFAR-10 data sets, the proposed FeFETbased CD-CiM achieves an accuracy over 95% and 80%, respectively.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.