Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Bayesian data-driven discovery of partial differential equations with variable coefficients (2102.01432v2)

Published 2 Feb 2021 in stat.ML and cs.LG

Abstract: The discovery of Partial Differential Equations (PDEs) is an essential task for applied science and engineering. However, data-driven discovery of PDEs is generally challenging, primarily stemming from the sensitivity of the discovered equation to noise and the complexities of model selection. In this work, we propose an advanced Bayesian sparse learning algorithm for PDE discovery with variable coefficients, predominantly when the coefficients are spatially or temporally dependent. Specifically, we apply threshold Bayesian group Lasso regression with a spike-and-slab prior (tBGL-SS) and leverage a Gibbs sampler for Bayesian posterior estimation of PDE coefficients. This approach not only enhances the robustness of point estimation with valid uncertainty quantification but also relaxes the computational burden from Bayesian inference through the integration of coefficient thresholds as an approximate MCMC method. Moreover, from the quantified uncertainties, we propose a Bayesian total error bar criteria for model selection, which outperforms classic metrics including the root mean square and the Akaike information criterion. The capability of this method is illustrated by the discovery of several classical benchmark PDEs with spatially or temporally varying coefficients from solution data obtained from the reference simulations. In the experiments, we show that the tBGL-SS method is more robust than the baseline methods under noisy environments and provides better model selection criteria along the regularization path.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com