Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Improved Baseline for Sentence-level Relation Extraction (2102.01373v4)

Published 2 Feb 2021 in cs.CL

Abstract: Sentence-level relation extraction (RE) aims at identifying the relationship between two entities in a sentence. Many efforts have been devoted to this problem, while the best performing methods are still far from perfect. In this paper, we revisit two problems that affect the performance of existing RE models, namely entity representation and noisy or ill-defined labels. Our improved RE baseline, incorporated with entity representations with typed markers, achieves an F1 of 74.6% on TACRED, significantly outperforms previous SOTA methods. Furthermore, the presented new baseline achieves an F1 of 91.1% on the refined Re-TACRED dataset, demonstrating that the pretrained LLMs (PLMs) achieve high performance on this task. We release our code to the community for future research.

Citations (120)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)